Evaluation¶
matchbox.client.eval
¶
Module implementing client-side evaluation features.
Modules:
-
utils
–Collection of client-side functions in aid of model evaluation.
Classes:
-
EvalData
–Object which caches evaluation data to measure performance of models.
Functions:
-
compare_models
–Compare metrics of models based on evaluation data.
-
get_samples
–Retrieve samples enriched with source data, grouped by resolution cluster.
EvalData
¶
Object which caches evaluation data to measure performance of models.
Methods:
-
precision_recall
–Computes precision and recall at one threshold.
-
pr_curve
–Computes precision and recall for each threshold in results.
compare_models
¶
compare_models(
resolutions: list[ModelResolutionName],
) -> ModelComparison
Compare metrics of models based on evaluation data.
Parameters:
-
resolutions
¶list[ModelResolutionName]
) –List of names of model resolutions to be compared.
Returns:
-
ModelComparison
–A model comparison object, listing metrics for each model.
get_samples
¶
get_samples(
n: int,
user_id: int,
resolution: ModelResolutionName | None = None,
clients: dict[str, Any] | None = None,
use_default_client: bool = False,
) -> dict[int, DataFrame]
Retrieve samples enriched with source data, grouped by resolution cluster.
Parameters:
-
n
¶int
) –Number of clusters to sample
-
user_id
¶int
) –ID of the user requesting the samples
-
resolution
¶ModelResolutionName | None
, default:None
) –Model resolution proposing the clusters. If not set, will use a default resolution.
-
clients
¶dict[str, Any] | None
, default:None
) –Dictionary from location names to valid client for each. Locations whose name is missing from the dictionary will be skipped.
-
use_default_client
¶bool
, default:False
) –Whether to use for all unset location clients a SQLAlchemy engine for the default warehouse set in the environment variable
MB__CLIENT__DEFAULT_WAREHOUSE
.
Returns:
Raises:
-
MatchboxSourceTableError
–If a source cannot be queried from a location using provided or default clients.
utils
¶
Collection of client-side functions in aid of model evaluation.
Classes:
-
EvalData
–Object which caches evaluation data to measure performance of models.
Functions:
-
get_samples
–Retrieve samples enriched with source data, grouped by resolution cluster.
-
compare_models
–Compare metrics of models based on evaluation data.
EvalData
¶
Object which caches evaluation data to measure performance of models.
Methods:
-
precision_recall
–Computes precision and recall at one threshold.
-
pr_curve
–Computes precision and recall for each threshold in results.
get_samples
¶
get_samples(
n: int,
user_id: int,
resolution: ModelResolutionName | None = None,
clients: dict[str, Any] | None = None,
use_default_client: bool = False,
) -> dict[int, DataFrame]
Retrieve samples enriched with source data, grouped by resolution cluster.
Parameters:
-
n
¶int
) –Number of clusters to sample
-
user_id
¶int
) –ID of the user requesting the samples
-
resolution
¶ModelResolutionName | None
, default:None
) –Model resolution proposing the clusters. If not set, will use a default resolution.
-
clients
¶dict[str, Any] | None
, default:None
) –Dictionary from location names to valid client for each. Locations whose name is missing from the dictionary will be skipped.
-
use_default_client
¶bool
, default:False
) –Whether to use for all unset location clients a SQLAlchemy engine for the default warehouse set in the environment variable
MB__CLIENT__DEFAULT_WAREHOUSE
.
Returns:
Raises:
-
MatchboxSourceTableError
–If a source cannot be queried from a location using provided or default clients.
compare_models
¶
compare_models(
resolutions: list[ModelResolutionName],
) -> ModelComparison
Compare metrics of models based on evaluation data.
Parameters:
-
resolutions
¶list[ModelResolutionName]
) –List of names of model resolutions to be compared.
Returns:
-
ModelComparison
–A model comparison object, listing metrics for each model.